Using Combinatorics to Prune Search Trees: Independent and Dominating Set

نویسندگان

  • Fedor V. Fomin
  • Serge Gaspers
  • Saket Saurabh
  • Alexey A. Stepanov
چکیده

We introduce a surprisingly simple technique to design and analyze algorithms based on search trees, that significantly improves many existing results in the area of exact algorithms. The technique is based on measuring the progress of Branch & Bound algorithms by making use of a combinatorial relation between the average and maximum dual degrees of a graph. By dual degree of a vertex, we mean the sum of the degrees of its neighbors and the maximum dual degree of a graph is the dual degree of a vertex that has maximum dual degree. The technique is general enough to be applied for several problems, and the algorithms based on this technique are simple and do not require extensive case analyses. Using this technique, we give the fastest known polynomial space algorithms for Maximum Independent Set, #2SAT and Minimum Dominating Set. In fact our O(1.1795n) time algorithm for Maximum Independent Set is faster than the existing exponential space algorithms. Immediate consequences of our results include improved polynomial space algorithms for Chromatic Number, (d, 2)-CSP, #1-IN-k-SAT, #Exact Cover, #Exact Hitting Set, #Weighted Set Packing and parameterized Weighted Vertex Cover among others. Department of Informatics, University of Bergen, N-5020 Bergen, Norway. [email protected], [email protected], [email protected] The Institute of Mathematical Sciences, Chennai 600 113, India. [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Roman domination and 2-independence in trees

‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mi...

متن کامل

On trees with equal Roman domination and outer-independent Roman domination numbers

A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...

متن کامل

Outer independent Roman domination number of trees

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

On Hop Roman Domination in Trees

‎Let $G=(V,E)$ be a graph‎. ‎A subset $Ssubset V$ is a hop dominating set‎‎if every vertex outside $S$ is at distance two from a vertex of‎‎$S$‎. ‎A hop dominating set $S$ which induces a connected subgraph‎ ‎is called a connected hop dominating set of $G$‎. ‎The‎‎connected hop domination number of $G$‎, ‎$ gamma_{ch}(G)$,‎‎‎ ‎is the minimum cardinality of a connected hop‎‎dominating set of $G$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006