Using Combinatorics to Prune Search Trees: Independent and Dominating Set
نویسندگان
چکیده
We introduce a surprisingly simple technique to design and analyze algorithms based on search trees, that significantly improves many existing results in the area of exact algorithms. The technique is based on measuring the progress of Branch & Bound algorithms by making use of a combinatorial relation between the average and maximum dual degrees of a graph. By dual degree of a vertex, we mean the sum of the degrees of its neighbors and the maximum dual degree of a graph is the dual degree of a vertex that has maximum dual degree. The technique is general enough to be applied for several problems, and the algorithms based on this technique are simple and do not require extensive case analyses. Using this technique, we give the fastest known polynomial space algorithms for Maximum Independent Set, #2SAT and Minimum Dominating Set. In fact our O(1.1795n) time algorithm for Maximum Independent Set is faster than the existing exponential space algorithms. Immediate consequences of our results include improved polynomial space algorithms for Chromatic Number, (d, 2)-CSP, #1-IN-k-SAT, #Exact Cover, #Exact Hitting Set, #Weighted Set Packing and parameterized Weighted Vertex Cover among others. Department of Informatics, University of Bergen, N-5020 Bergen, Norway. [email protected], [email protected], [email protected] The Institute of Mathematical Sciences, Chennai 600 113, India. [email protected]
منابع مشابه
Mixed Roman domination and 2-independence in trees
Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacentor incident to at least one element $yin Vcup E$ for which $f(y)=2$. The weight of anMRDF $f$ is $sum _{xin Vcup E} f(x)$. The mi...
متن کاملOn trees with equal Roman domination and outer-independent Roman domination numbers
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...
متن کاملOuter independent Roman domination number of trees
A Roman dominating function (RDF) on a graph G=(V,E) is a function f : V → {0, 1, 2} such that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. An RDF f is calledan outer independent Roman dominating function (OIRDF) if the set ofvertices assigned a 0 under f is an independent set. The weight of anOIRDF is the sum of its function values over ...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملOn Hop Roman Domination in Trees
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$...
متن کامل